All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Invertebrate traits, diversity and the vulnerability of groundwater ecosystems.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00561058" target="_blank" >RIV/60077344:_____/22:00561058 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1111/1365-2435.14125" target="_blank" >https://doi.org/10.1111/1365-2435.14125</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2435.14125" target="_blank" >10.1111/1365-2435.14125</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Invertebrate traits, diversity and the vulnerability of groundwater ecosystems.

  • Original language description

    Groundwater comprises the largest freshwater ecosystem on the planet. It has a distinct regime of extreme, yet stable environmental conditions that have favoured the development of similar morphological and functional traits in the resident invertebrate fauna (stygofauna). The analysis of community traits is increasingly used as an alternative to taxonomy-based assessments of biodiversity, especially for monitoring ecosystem status and linking the functions of organisms to ecological processes, yet it has been rarely applied to stygofauna and groundwater ecosystems. In this paper, we review the variation in functional traits among the invertebrate fauna of this important ecosystem. We focus on the stygofauna and processes of alluvium and fractured rock aquifers that are typified by small voids and fissures that constrain the habitats and environmental conditions. As a first step, we compare trait variability between groundwater and surface water invertebrate communities and then examine the significance of the ranges of these traits to the vulnerability of the ecosystem to change. Fifteen potentially useful functional traits are recognised. Eight of these have narrower ranges (i.e. exhibit fewer states, or attributes, of a particular trait) in groundwater than they do in surface water. Two traits have wider ranges. Our synthesis suggests that the relative stability of groundwater environments has led to low trait variability. The low biomass and low reproductive rate of stygofauna suggest that recovery potential following disturbance is likely to be low. For the purposes of both improved understanding and effective management, further work is needed to document additional functional traits and their states in groundwater fauna, enabling a better understanding of the relationship between response and effect traits in these ecosystems. Read the free Plain Language Summary for this article on the Journal blog.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10503 - Water resources

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Functional Ecology

  • ISSN

    0269-8463

  • e-ISSN

    1365-2435

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    2200-2214

  • UT code for WoS article

    000832919100001

  • EID of the result in the Scopus database

    2-s2.0-85135259279