All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00580525" target="_blank" >RIV/60077344:_____/22:00580525 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26620/23:PU147336 RIV/00027162:_____/23:N0000021 RIV/00216224:14310/23:00130535 RIV/62156489:43210/23:43922564 RIV/61989100:27240/23:10252773

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/adhm.202202682" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adhm.202202682</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adhm.202202682" target="_blank" >10.1002/adhm.202202682</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract

  • Original language description

    Magnetic nanorobots offer wireless navigation capability in hard-to-reach areas of the human body for targeted therapy and diagnosis. Though in vivo imaging is required for guidance of the magnetic nanorobots toward the target areas, most of the imaging techniques are inadequate to reveal the potential locomotion routes. This work proposes the use of radiopaque magnetic nanorobots along with microcomputed tomography (microCT) for localized in vivo imaging applications. The nanorobots consist of a contrast agent, barium sulfate (BaSO4), magnetized by the decoration of magnetite (Fe3O4) particles. The magnetic features lead to actuation under rotating magnetic fields and enable precise navigation in a microfluidic channel used to simulate confined spaces of the body. In this channel, the intrinsic radiopacity of the nanorobots also provides the possibility to reveal the internal structures by X-ray contrast. Furthermore, in vitro analysis indicates nontoxicity of the nanorobots. In vivo experiments demonstrate localization of the nanorobots in a specific part of the gastrointestinal (GI) tract upon the influence of the magnetic field, indicating the efficient control even in the presence of natural peristaltic movements. The nanorobots reported here highlight that smart nanorobotic contrast agents can improve the current imaging-based diagnosis techniques by providing untethered controllability in vivo.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Healthcare Materials

  • ISSN

    2192-2640

  • e-ISSN

    2192-2659

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    MAR

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    2202682

  • UT code for WoS article

    000903078100001

  • EID of the result in the Scopus database

    2-s2.0-85145028340