Macrofauna amplify plant litter decomposition and stabilization in arctic soils in a warming climate
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00585390" target="_blank" >RIV/60077344:_____/24:00585390 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/24:43908326 RIV/00216208:11310/24:10478488
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0038071723003073?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071723003073?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.soilbio.2023.109245" target="_blank" >10.1016/j.soilbio.2023.109245</a>
Alternative languages
Result language
angličtina
Original language name
Macrofauna amplify plant litter decomposition and stabilization in arctic soils in a warming climate
Original language description
The soil organic carbon (SOC) pool of the Arctic region is currently protected by low temperatures, but is likely to decrease due to greater organic matter (OM) decomposition under a warmer climate. Negative feedback for climate warming can, however, be reversed by SOC accrual as climate warming leads to shifts in arctic vegetation (from grass to shrub) and soil faunal (introduction of macrofauna) communities affecting plant-soil C allocation. To decipher these contrasting effects, we performed a laboratory experiment with soils from dry tundra to test the interacting effects of plant litter quality (high-quality grass litter vs. the intermediate- and low-quality litter of shrubs) and soil fauna functional grouping (micro-, meso- and macrofauna [millipede]) on the processes of litter decomposition and OM stabilization. Our findings showed that macrofauna largely promoted decomposition of shrub litter, while soil micro- and mesofauna were mainly responsible for the decomposition of grass litter. Our study thus confirmed that, when introduced and established in a warmer Arctic, macrofauna may become an important agent in shrub litter decomposition. Our data also showed that with shrub litter, higher C content was stabilized as particulate OM (POM) in aggregates, whereas in grass litter and low-quality shrub litter, higher C content was stabilized as mineral-associated OM (MAOM). Both these effects were larger in the presence of macrofauna and with a higher abundance of fungi. This suggests that consequent shrub OM stabilization in occluded POM and MAOM fractions will be carried out jointly by macrofauna and fungi, which will probably lead to more efficient OM stabilization in Arctic soils than in the case of grass litter OM stabilization by micro- and mesofauna and bacteria. In conclusion, our study suggests that vegetation changes and the introduction of macrofauna in a warming climate will most probably lead to higher OM stabilization in Arctic soils.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40104 - Soil science
Result continuities
Project
<a href="/en/project/GA17-20839S" target="_blank" >GA17-20839S: Linking functional traits of three organism levels as driving mechanisms of ecosystem functions in the Arctic</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soil Biology and Biochemistry
ISSN
0038-0717
e-ISSN
1879-3428
Volume of the periodical
188
Issue of the periodical within the volume
January
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
109245
UT code for WoS article
001164268200001
EID of the result in the Scopus database
2-s2.0-85181667601