All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Living and decaying roots as regulators of soil aggregation and organic matter formation-from the rhizosphere to the detritusphere

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00597842" target="_blank" >RIV/60077344:_____/24:00597842 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071724001925?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071724001925?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2024.109503" target="_blank" >10.1016/j.soilbio.2024.109503</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Living and decaying roots as regulators of soil aggregation and organic matter formation-from the rhizosphere to the detritusphere

  • Original language description

    In dryland ecosystems, typically characterized by sparse vegetation and nutrient scarcity, pioneer plants exert a critical role in the build-up of soil carbon (C). Continuous root-derived C inputs, including rhizodeposition and structural root litter, create hotspots of increased microbial activity and nutrient availability where biogeochemical processes, such as soil aggregation and the accumulation and stabilization of organic matter (OM), are promoted. Our study aims to disentangle the effects of root C inputs on soil aggregate formation, microbial community structures, and on the fate of OM-both before and after plant death, i.e., during the transition from rhizosphere to detritusphere. This was realized in a two-phase incubation approach, tracing the natural and undisturbed transition from growth to subsequent decomposition of a pioneer plant-root system ( Helenium aromaticum ) in a semi-arid topsoil and subsoil. We quantified water-stable aggregates, investigated the fate and composition of OM separated into particulate and mineral-associated OM fractions (POM and MAOM), and observed successional changes in the root-associated microbiome. Our results underscore the significance of roots as vectors for macroaggregation within the rhizosphere in both topsoil and subsoil, associated with a particularly strong increase in fungal abundance in the subsoil. In topsoil, we identified root legacy effects in the detritusphere, as root-induced macroaggregation persisted after plant death, a phenomenon not observed in subsoil. These root legacy effects were accompanied by a clear succession towards gram + bacteria, which appeared to outcompete fungi during root decomposition. The increased availability of decaying litter surfaces further facilitated the protection of particulate OM via the occlusion into aggregates. Overall, to gain a holistic understanding of plant-microbe-soil interactions, we emphasize the need for more studies that span over the full temporal dimension from living to dying plants in intact soil systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

    1879-3428

  • Volume of the periodical

    197

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    109503

  • UT code for WoS article

    001269404200001

  • EID of the result in the Scopus database

    2-s2.0-85198020594