Results on Functions on Dedekind Multisets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00537101" target="_blank" >RIV/60162694:G43__/19:00537101 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/11/9/1125" target="_blank" >https://www.mdpi.com/2073-8994/11/9/1125</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11091125" target="_blank" >10.3390/sym11091125</a>
Alternative languages
Result language
angličtina
Original language name
Results on Functions on Dedekind Multisets
Original language description
Many real-life problems are well represented only by sets which allow repetition(s), such as the multiset. Although not limited to the following, such cases may arise in a database query, chemical structures and computer programming. The set of roots of a polynomial, say f(x) , has been found to correspond to a multiset, say F. If f(x) and g(x) are polynomials whose sets of roots respectively correspond to the multisets F(x) and G(x) , the set of roots of their product, f(x)g(x) , corresponds to the multiset F⊎G , which is the sum of multisets F and G. In this paper, some properties of the algebraic sum of multisets ⊎ and some results on selection are established. Also, the count function of the image of any function on Dedekind multisets is defined and some of its properties are established. Some applications of these multisets are also given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10700 - Other natural sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SYMMETRY-BASEL
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
11
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
1125
UT code for WoS article
000489177900061
EID of the result in the Scopus database
2-s2.0-85071949307