All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On geometric polygroups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F20%3A00555678" target="_blank" >RIV/60162694:G43__/20:00555678 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.anstuocmath.ro/mathematics/anale2020v1/1_Arabpur%20F.%20et%20all.pdf" target="_blank" >https://www.anstuocmath.ro/mathematics/anale2020v1/1_Arabpur%20F.%20et%20all.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/auom-2020-0002" target="_blank" >10.2478/auom-2020-0002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On geometric polygroups

  • Original language description

    In this paper, we introduce a geodesic metric space called generalized Cayley graph (gCay(P,S)) on a finitely generated polygroup. We define a hyperaction of polygroup on gCayley graph and give some properties of this hyperaction. We show that gCayley graphs of a polygroup by two different generators are quasi-isometric. Finally, we express a connection between finitely generated polygroups and geodesic metric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA

  • ISSN

    1224-1784

  • e-ISSN

    1844-0835

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    17

  • Pages from-to

    17-33

  • UT code for WoS article

    000527373100002

  • EID of the result in the Scopus database

    2-s2.0-85083891476