All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Study of Cayley Digraphs over Polygroups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563541" target="_blank" >RIV/60162694:G43__/25:00563541 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.mdpi.com/journal/mathematics" target="_blank" >http://www.mdpi.com/journal/mathematics</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math12172711" target="_blank" >10.3390/math12172711</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Study of Cayley Digraphs over Polygroups

  • Original language description

    In this paper we introduce Cayley digraphs associated to finitely generated polygroups, where the vertices correspond to finite products of the generators of polygroups and the edges to multiplication by vertices and generators. We investigate some properties of the Cayley digraphs, emphasizing connectivity and existence of cycles for each vertex of the Cayley digraphs. Particularly, we identify Cayley digraphs on polygroups derived from conjugate classes of dihedral groups. Moreover, we examine some fundamental illustrative examples of Cayley digraphs through the class of gmg-polygroups.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATHEMATICS

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    2711

  • UT code for WoS article

    001311169400001

  • EID of the result in the Scopus database

    2-s2.0-85204148153