Application of Carbon–Flax Hybrid Composite in High Performance Electric Personal Watercraft
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558008" target="_blank" >RIV/60162694:G43__/23:00558008 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/22:PU144356
Result on the web
<a href="https://www.mdpi.com/2073-4360/14/9/1765" target="_blank" >https://www.mdpi.com/2073-4360/14/9/1765</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym14091765" target="_blank" >10.3390/polym14091765</a>
Alternative languages
Result language
angličtina
Original language name
Application of Carbon–Flax Hybrid Composite in High Performance Electric Personal Watercraft
Original language description
Within the herein presented research, we studied the applicability of flax fabrics for composite parts in personal watercrafts in order to enhance damping of vibrations from the engine and noise reduction (which is relatively high for contemporary carbon constructions). Since the composite parts are intended to be exposed to humid environments requiring high levels of mechanical properties, a carbon–flax composite was selected. Samples of carbon, fiberglass, flax, and hybrid carbon–flax twill and biax fabrics were subjected to tensile and three-point bending tests. The mechanical properties were also tested after exposure of the samples to a humid environment. Damping was assessed by vibration and noise measurements directly on the complete float for samples as well as real parts. The hybrid carbon–flax material exhibited lower values of tensile strength than the carbon material (760 MPa compared to 463 MPa), but, at the same time, significantly higher than the other tested materials, or flax itself (115 MPa for a twill fabric). A similar trend in the results was observed for the three-point bending tests. Vibration tests and noise measurements showed reductions in vibration amplitude and frequency when using the carbon–flax hybrid material; the frequency response function for the watercraft part assembled from the hybrid material was 50% lower than for that made of carbon. Testing of samples located in a humid environment showed the necessity of surface treatment to prevent moisture absorption (mechanical properties were reduced at minimum by 28%). The tests confirmed that the hybrid material is satisfactory in terms of strength and its contribution to noise and vibration damping.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1765
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
17
UT code for WoS article
000794502300001
EID of the result in the Scopus database
2-s2.0-85129891121