Linear Diophantine Fuzzy Subspaces of a Vector Space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558820" target="_blank" >RIV/60162694:G43__/24:00558820 - isvavai.cz</a>
Result on the web
<a href="http://www.mdpi.com/journal/mathematics" target="_blank" >http://www.mdpi.com/journal/mathematics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11030503" target="_blank" >10.3390/math11030503</a>
Alternative languages
Result language
angličtina
Original language name
Linear Diophantine Fuzzy Subspaces of a Vector Space
Original language description
The notion of a linear diophantine fuzzy set as a generalization of a fuzzy set is a mathematical approach that deals with vagueness in decision-making problems. The use of reference parameters associated with validity and non-validity functions in linear diophantine fuzzy sets makes it more applicable to model vagueness in many real-life problems. On the other hand, subspaces of vector spaces are of great importance in many fields of science. The aim of this paper is to combine the two notions. In this regard, we consider the linear diophantine fuzzification of a vector space by introducing and studying the linear diophantine fuzzy subspaces of a vector space. First, we studied the behaviors of linear diophantine fuzzy subspaces of a vector space under a linear diophantine fuzzy set. Second, and by means of the level sets, we found a relationship between the linear diophantine fuzzy subspaces of a vector space and the subspaces of a vector space. Finally, we discuss the linear diophantine fuzzy subspaces of a quotient vector space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
503
UT code for WoS article
000930871000001
EID of the result in the Scopus database
2-s2.0-85147814101