All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linear Diophantine Fuzzy Set Theory Applied to BCK/BCI-Algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558114" target="_blank" >RIV/60162694:G43__/23:00558114 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/10/12/2138/pdf?version=1655634559" target="_blank" >https://www.mdpi.com/2227-7390/10/12/2138/pdf?version=1655634559</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10122138" target="_blank" >10.3390/math10122138</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linear Diophantine Fuzzy Set Theory Applied to BCK/BCI-Algebras

  • Original language description

    In this paper, we apply the concept of linear Diophantine fuzzy sets in BCK/BCI-algebras. In this respect, the notions of linear Diophantine fuzzy subalgebras and linear Diophantine fuzzy (commutative) ideals are introduced and some vital properties are discussed. Additionally, character-izations of linear Diophantine fuzzy subalgebras and linear Diophantine fuzzy (commutative) ideals are considered. Moreover, the associated results for linear Diophantine fuzzy subalgebras, linear Diophantine fuzzy ideals and linear Diophantine fuzzy commutative ideals are obtained.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    2138

  • UT code for WoS article

    000816674000001

  • EID of the result in the Scopus database

    2-s2.0-85132907846