Criticality of general two-term even-order linear difference equation via a chain of recessive solutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563298" target="_blank" >RIV/60162694:G43__/25:00563298 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202300090" target="_blank" >https://doi.org/10.1002/mana.202300090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202300090" target="_blank" >10.1002/mana.202300090</a>
Alternative languages
Result language
angličtina
Original language name
Criticality of general two-term even-order linear difference equation via a chain of recessive solutions
Original language description
In this paper, the author investigates particular disconjugate even-order linear difference equations with two terms and classify them based on the properties of their recessive solutions at plus and minus infinity. The main theorem described states that the studied equation is (k-p+1)-critical whenever a specific second-order linear difference equation is p-critical. In the proof, the author derived closed-form solutions for the studied equation wherein the solutions of the said second-order equation appear. Furthermore, the solutions were organized, in order to determine recessive solutions, into a linear chain by sequence ordering that compares the solutions at + and - infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
297
Issue of the periodical within the volume
8
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
2970-2985
UT code for WoS article
001208554700001
EID of the result in the Scopus database
2-s2.0-85191347764