All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The structure of commutative automorphic loops

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F11%3A50724" target="_blank" >RIV/60460709:41310/11:50724 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The structure of commutative automorphic loops

  • Original language description

    An automorphic loop (or A-loop) is a loop whose inner mapping are automorphisms. Every elemnt of a commutative A-loop generates a group, and 1/xy=1/x 1/y holds. Let Q be a finite commutative A-loop and p a prime. The loop Q has order a power of p if andonly if every element of Q has order a power of p. The loop Q decomposes as a direct product of a loop of odd order and a loop of order a power of 2. If Q is of odd order, it is solvable. If A is a subloop of Q, then |A| divides |Q|. If p divides |Q|, then Q contains an element of order p. If there is a simple nonassociative commutative A-loop, it is of exponent 2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions og the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    363

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    365-384

  • UT code for WoS article

    000282653700018

  • EID of the result in the Scopus database