Nilpotency in automorphic loops of prime power order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F12%3A54521" target="_blank" >RIV/60460709:41310/12:54521 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nilpotency in automorphic loops of prime power order
Original language description
A loop is automorphic if its inner mappings are automorphisms. Using so-called associated operations, we show that every commutative automorphic loop of odd prime power order is centrally nilpotent. Starting with anisotropic planes in the vector space of2x2 matrices over the field of prime order p, we construct a family of automorphic loops of order p3 with trivial center.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F07%2FP015" target="_blank" >GP201/07/P015: Word problem in free left distributive idempotent groupoids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
350
Issue of the periodical within the volume
N
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
64-76
UT code for WoS article
WOS:00029797070
EID of the result in the Scopus database
—