Classification of 8-dimensional Trilinear Alternating Forms over GF(2)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F15%3A68104" target="_blank" >RIV/60460709:41310/15:68104 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/00927872.2014.927475" target="_blank" >http://dx.doi.org/10.1080/00927872.2014.927475</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00927872.2014.927475" target="_blank" >10.1080/00927872.2014.927475</a>
Alternative languages
Result language
angličtina
Original language name
Classification of 8-dimensional Trilinear Alternating Forms over GF(2)
Original language description
Let V be an n-dimensional vector space over a finite field and let f be a trilinear alternating form over V. For such forms we introduce a new invariant called radical polynomial and investigate its behaviour, in particular in the case of the 2-element field. We show that it is compatible with direct products of forms and how it is related to its values on dimension n - 1. Moreover, it turns out that it is full up to dimension 7. On the other hand, on higher dimensions it is no more full and it is necessary to generalize it to obtain (using computer) a classification of forms on dimension 8 over the 2-element field. This classification is provided, together with the sizes of stabilizers of the corresponding forms.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Algebra
ISSN
0092-7872
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
3459-3471
UT code for WoS article
000355796600026
EID of the result in the Scopus database
—