An upper bound on the dimension of the reflexivity closure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00338965" target="_blank" >RIV/67985840:_____/10:00338965 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An upper bound on the dimension of the reflexivity closure
Original language description
We give a sharp estimate on the dimension of the reflexivity closure of a linear space. Let X and Y be linear spaces over a commutative, algebraicelly closed field. Let S be a linear space of operators from X to Y. Suppore that the dimension of S in n. Then the reflexivity closure of S has dimension less or equal to n(n+1)/2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000276643400021
EID of the result in the Scopus database
—