Modelling of hot-air and vacuum drying of persimmon fruit (Diospyros kaki) using computational intelligence methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F20%3A81706" target="_blank" >RIV/60460709:41310/20:81706 - isvavai.cz</a>
Result on the web
<a href="https://agronomy.emu.ee/wp-content/uploads/2020/05/AR2020_Vol18SI2_Khaled.pdf#abstract-7515" target="_blank" >https://agronomy.emu.ee/wp-content/uploads/2020/05/AR2020_Vol18SI2_Khaled.pdf#abstract-7515</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15159/ar.20.095" target="_blank" >10.15159/ar.20.095</a>
Alternative languages
Result language
angličtina
Original language name
Modelling of hot-air and vacuum drying of persimmon fruit (Diospyros kaki) using computational intelligence methods
Original language description
The study evaluated the feasibility of applying computational intelligence methods as a non destructive technique in describing the drying behaviour of persimmon fruit using vacuum drying (VD) and hot air drying (HAD) methods and to compare the results with thin layer mathematical models. Drying temperatures were 50, 60 and 70 C. Kinetic models were developed using semi theoretical thin layer models and computational intelligence methods: multi layer feed forward artificial neural network (ANN) and support vector regression (SVR). The statistical indicators of coefficient of determination (R2 ) and root mean square error (RMSE) were used to assess the suitability of the models. The thin layer mathematical models namely page and logarithmic accurately described the drying kinetics of persimmon slices with the highest R2 of 0,9999 and lowest RMSE of 0,0031. ANN showed R2 and RMSE values of 1,0000 and 0,0003, while SVR showed R2 of 0,9999 and RMSE of 0,0004. The validation results indicated good agreeme
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
40401 - Agricultural biotechnology and food biotechnology
Result continuities
Project
<a href="/en/project/EF16_027%2F0008366" target="_blank" >EF16_027/0008366: Supporting the development of international mobility of research staff at CULS Prague</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Agronomy Research
ISSN
1406-894X
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
S2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
1323-1335
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85086325507