Distributive biracks and solutions of the Yang-Baxter equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F20%3A81773" target="_blank" >RIV/60460709:41310/20:81773 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0218196720500150" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0218196720500150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218196720500150" target="_blank" >10.1142/S0218196720500150</a>
Alternative languages
Result language
angličtina
Original language name
Distributive biracks and solutions of the Yang-Baxter equation
Original language description
We investigate a class of non-involutive solutions of the Yang-Baxter equation which generalize derived (self-distributive) solutions. In particular, we study generalized multi-permutation solutions in this class. We show that the Yang-Baxter (permutation) groups of such solutions are nilpotent. We formulate the results in the language of biracks which allows us to apply universal algebra tools.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
ISSN
0218-1967
e-ISSN
0218-1967
Volume of the periodical
30
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
667-683
UT code for WoS article
000525370400009
EID of the result in the Scopus database
2-s2.0-85078192682