Cocyclic braces and indecomposable cocyclic solutions of the Yang-Baxter equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F22%3A91414" target="_blank" >RIV/60460709:41310/22:91414 - isvavai.cz</a>
Result on the web
<a href="https://www.ams.org/journals/proc/2022-150-10/S0002-9939-2022-15962-0/home.html" target="_blank" >https://www.ams.org/journals/proc/2022-150-10/S0002-9939-2022-15962-0/home.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/15962" target="_blank" >10.1090/proc/15962</a>
Alternative languages
Result language
angličtina
Original language name
Cocyclic braces and indecomposable cocyclic solutions of the Yang-Baxter equation
Original language description
We study indecomposable involutive set-theoretic solutions of the Yang-Baxter equation with cyclic permutation groups (cocyclic solutions). We give a complete system of three invariants for finite non-isomorphic solutions of this type and use this construction to enumerate all of them.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
150
Issue of the periodical within the volume
10
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
4223-4239
UT code for WoS article
000905188800009
EID of the result in the Scopus database
2-s2.0-85134657120