Twisted cocycles of Lie algebras and corresponding invariant functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F09%3A00172436" target="_blank" >RIV/68407700:21340/09:00172436 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Twisted cocycles of Lie algebras and corresponding invariant functions
Original language description
We consider finite-dimensional complex Lie algebras. Using certain complex parameters we generalize the concept of cohomology cocycles of Lie algebras. A special case is generalization of 1-cocycles with respect to the adjoint representation - so called(alpha, beta, gamma)-derivations. Parametric sets of spaces of cocycles allow us to define complex functions which are invariant under Lie isomorphisms. Such complex functions thus represent useful invariants - we show how they classify three and four-dimensional Lie algebras as well as how they apply to some eight-dimensional 1-parametric nilpotent continua of Lie algebras. These functions also provide necessary criteria for existence of 1-parametric continuous contraction.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
430
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
—
UT code for WoS article
000263018100037
EID of the result in the Scopus database
—