On (alpha,beta,gamma)-derivations of Lie Algebras and Corresponding Invariant Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F08%3A04144380" target="_blank" >RIV/68407700:21340/08:04144380 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On (alpha,beta,gamma)-derivations of Lie Algebras and Corresponding Invariant Functions
Original language description
We consider finite dimensional complex Lie algebras. We generalize the concept of Lie derivations via certain complex parameters and obtain various Lie and Jordan operator algebras as well as two one-parametric sets of linear operators. Using these parametric sets, we introduce complex functions with a fundamental property - invariance under Lie isomorphisms. One of these basis-independent functions represents a complete set of invariant(s) for three-dimensional Lie algebras. We present also its application to physically motivated examples in dimension 8.
Czech name
(alfa,beta,gama)-derivace Lieových algeber a odpovídající invariantní funkce
Czech description
Zobecníme koncept Lieových derivací pro konečnědimenzionální Lieovy algebry pomocí komplexních parametrů.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
—
UT code for WoS article
000253592800003
EID of the result in the Scopus database
—