Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F22%3A91796" target="_blank" >RIV/60460709:41310/22:91796 - isvavai.cz</a>
Alternative codes found
RIV/68378041:_____/21:00551564 RIV/68407700:21220/21:00352557 RIV/68407700:21230/21:00352557 RIV/00027162:_____/21:N0000211
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1383571821001054" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1383571821001054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mrgentox.2021.503414" target="_blank" >10.1016/j.mrgentox.2021.503414</a>
Alternative languages
Result language
angličtina
Original language name
Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend
Original language description
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (mu g PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mutation Research-Genetic Toxicology and Environmental Mutagenesis
ISSN
1383-5718
e-ISSN
1879-3592
Volume of the periodical
872
Issue of the periodical within the volume
December 2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000708693800004
EID of the result in the Scopus database
—