Fragment size and diversity of mulches affect their decomposition, nutrient dynamics, and mycorrhizal root colonisation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A97114" target="_blank" >RIV/60460709:41320/23:97114 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1038/s41598-023-36457-x" target="_blank" >http://dx.doi.org/10.1038/s41598-023-36457-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-023-36457-x" target="_blank" >10.1038/s41598-023-36457-x</a>
Alternative languages
Result language
angličtina
Original language name
Fragment size and diversity of mulches affect their decomposition, nutrient dynamics, and mycorrhizal root colonisation
Original language description
Plant-based mulch has been proposed as a sustainable way of maintaining soil fertility. However, the role of mulch diversity, quality, and size in decomposition dynamics, and their effect on crop yield, has not been fully explored. We investigated how mulch quality, proxied by the constituent plant species diversity, and residue size drive mulch decomposition, nutrient release, crop nutrition, and yield. A rhizotron experiment was set up with barley as a model crop, with the addition of mulch of two particle sizes (1.5 and 30 cm) and four different plant residue mixes of differing biodiversity (17, 12, 6, and 1 species) in a fully factorial design. Soil nutrient dynamics were measured at advanced decomposition stages, together with residue quality, arbuscular mycorrhizal fungal (AMF) root colonisation, and crop yield. Residue mass loss was significantly affected by its chemical composition. Initial NDF content was more restricted factor in C and N mineralisation than C:N or lignin. Long residues retained significantly higher C and N content, than short residues. Crop yield was not affected by residue type or size. Residue size significantly affected barley growth rate, influencing seed protein content. Soil available K was significantly increased by residues with a higher initial C:N ratio. Short residues resulted in higher soil Zn. Residues of higher diversity resulted inhigher AMF root colonisationof the barley plants. Generally, long residue mulches maintain higher fertilisation capacity at advanced stage of decomposition than short ones, without a deleterious effect on crop yield. Further investigation should evaluate the effect of continuous application of long residue mulches on soil fertility and microbial symbiosis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
1-14
UT code for WoS article
001006690200062
EID of the result in the Scopus database
2-s2.0-85163111687