All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field effects of oxygenated monoterpenes and estragole combined with pheromone on attraction of Ips typographus and its natural enemies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A97915" target="_blank" >RIV/60460709:41320/23:97915 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292581/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292581/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/ffgc.2023.1292581" target="_blank" >10.3389/ffgc.2023.1292581</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field effects of oxygenated monoterpenes and estragole combined with pheromone on attraction of Ips typographus and its natural enemies

  • Original language description

    Introduction: Central European Norway spruce monocultures face Ips typographus outbreaks due to decreasing resistance. These beetles use volatile compounds to communicate and select suitable host trees. Spruce trees, beetles, and their symbiotic ophiostomatoid fungi emit oxygenated monoterpenes, including 1,8-cineole, alpha-terpineol, camphor, carvone, terpinen-4-ol, isopinocamphone, and pinocamphone, and the phenylpropanoid estragole, particularly in the infestation phase. These compounds trigger strong responses in I. typographus antennae, motivating our field study.Objective: This study aimed to assess how adding these compounds to the aggregation pheromone of Ips typographus modulates the attraction of this bark beetle and its natural enemies.Methods: In combination with I. typographus pheromone, estragole, 1,8-cineole, (+/-)-camphor, (-)-carvone, alpha-terpineol, (-)-terpinen-4-ol, (+)-pinocamphone, and (+)-isopinocamphone at low, medium, and high doses were tested in pheromone traps at two sites in the Czech Republic.Results: All 1,8-cineole doses and the high estragole dose acted as anti-attractants for I. typographus, whereas all (+)-isopinocamphone doses enhanced their attraction to pheromone. Catches of natural enemies, the Staphylinidae and Pteromalidae, varied by location.Conclusion: 1,8-cineole, isopinocamphone, and estragole may play vital roles in tritrophic interactions among spruce trees, and I. typographus and its natural enemies, and these compounds may be developed into new or enhanced semiochemical-based pest control methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FRONTIERS IN FORESTS AND GLOBAL CHANGE

  • ISSN

    2624-893X

  • e-ISSN

    2624-893X

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    001135811900001

  • EID of the result in the Scopus database

    2-s2.0-85181458513