All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Schwarz Type Domain Decomposition and Subcycling Multi-time Step Approach for Solving Richards Equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F16%3A71254" target="_blank" >RIV/60460709:41330/16:71254 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4952254" target="_blank" >http://dx.doi.org/10.1063/1.4952254</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4952254" target="_blank" >10.1063/1.4952254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Schwarz Type Domain Decomposition and Subcycling Multi-time Step Approach for Solving Richards Equation

  • Original language description

    Modelling the transport processes in a vadose zone, e.g. modelling contaminant transport or the effect of the soil water regime on changes in soil structure and composition, plays an important role in predicting the reactions of soil biotopes to anthropogenic activity. Water flow is governed by the quasilinear Richards equation. The paper concerns the implementation of a multi-time-step approach for solving a nonlinear Richards equation. When modelling porous media flow with a Richards equation, due to a possible convection dominance and a convergence of a nonlinear solver, a stable finite element approximation requires accurate temporal and spatial integration. The method presented here enables adaptive domain decomposition algorithm together with a multi-time-step treatment of actively changing subdomains.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20206 - Computer hardware and architecture

Result continuities

  • Project

    <a href="/en/project/GP13-11977P" target="_blank" >GP13-11977P: Method of an adaptive domain decomposition for solving Richards equation problems in a porous medium with contrastive hydraulic properties.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015)

  • ISBN

    978-0-7354-1392-4

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    20-24

  • Publisher name

    AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE

  • Place of publication

    HUNTINGTON QUADRANGLE, USA

  • Event location

    Rhodes

  • Event date

    Sep 23, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380803300472