Schwarz Type Domain Decomposition and Subcycling Multi-time Step Approach for Solving Richards Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F16%3A71254" target="_blank" >RIV/60460709:41330/16:71254 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4952254" target="_blank" >http://dx.doi.org/10.1063/1.4952254</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4952254" target="_blank" >10.1063/1.4952254</a>
Alternative languages
Result language
angličtina
Original language name
Schwarz Type Domain Decomposition and Subcycling Multi-time Step Approach for Solving Richards Equation
Original language description
Modelling the transport processes in a vadose zone, e.g. modelling contaminant transport or the effect of the soil water regime on changes in soil structure and composition, plays an important role in predicting the reactions of soil biotopes to anthropogenic activity. Water flow is governed by the quasilinear Richards equation. The paper concerns the implementation of a multi-time-step approach for solving a nonlinear Richards equation. When modelling porous media flow with a Richards equation, due to a possible convection dominance and a convergence of a nonlinear solver, a stable finite element approximation requires accurate temporal and spatial integration. The method presented here enables adaptive domain decomposition algorithm together with a multi-time-step treatment of actively changing subdomains.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20206 - Computer hardware and architecture
Result continuities
Project
<a href="/en/project/GP13-11977P" target="_blank" >GP13-11977P: Method of an adaptive domain decomposition for solving Richards equation problems in a porous medium with contrastive hydraulic properties.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015)
ISBN
978-0-7354-1392-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
20-24
Publisher name
AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE
Place of publication
HUNTINGTON QUADRANGLE, USA
Event location
Rhodes
Event date
Sep 23, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000380803300472