Solving the nonlinear Richards equation model with adaptive domain decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00228923" target="_blank" >RIV/68407700:21110/14:00228923 - isvavai.cz</a>
Alternative codes found
RIV/60460709:41330/14:63900
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0377042714001502" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0377042714001502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2014.03.010" target="_blank" >10.1016/j.cam.2014.03.010</a>
Alternative languages
Result language
angličtina
Original language name
Solving the nonlinear Richards equation model with adaptive domain decomposition
Original language description
Modeling the transport processes in a vadose zone plays an important role in predicting the reactions of soil biotopes to anthropogenic activity, e.g. modeling contaminant transport, the effect of the soil water regime on changes in soil structure and composition, etc. Water flow is governed by the Richards equation, while the constitutive laws are typically supplied by the van Genuchten model, which can be understood as a pore size distribution function. Certain materials with dominantly uniform pore sizes (e.g. coarse-grained materials) can exhibit ranges of constitutive function values within several orders of magnitude, possibly beyond the length of real numbers that computers can handle. Thus a numerical approximation of the Richards equation often requires the solution of systems of equations that cannot be solved on computer arithmetics. An appropriate domain decomposition into subdomains that cover only a limited range of constitutive function values, and that will change adapt
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP13-11977P" target="_blank" >GP13-11977P: Method of an adaptive domain decomposition for solving Richards equation problems in a porous medium with contrastive hydraulic properties.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
270
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
2-11
UT code for WoS article
000337660100002
EID of the result in the Scopus database
—