All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Domain decomposition adaptivity for the Richards equation model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F13%3A00215749" target="_blank" >RIV/68407700:21110/13:00215749 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41330/13:66711 RIV/60460709:41330/14:57170

  • Result on the web

    <a href="http://link.springer.com/article/10.1007%2Fs00607-012-0279-8/fulltext.html" target="_blank" >http://link.springer.com/article/10.1007%2Fs00607-012-0279-8/fulltext.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00607-012-0279-8" target="_blank" >10.1007/s00607-012-0279-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Domain decomposition adaptivity for the Richards equation model

  • Original language description

    This paper presents a study on efficient and economical domain decomposition adaptivity for Richards equation problems. Many real world applications of the Richards equation model typically involve solving systems of linear equations of huge dimensions.Multi-thread methods are therefore often preferred in order to reduce the required computation time. Multi-thread (parallel) execution is typically achieved by domain decomposition methods. In the case of non-homogeneous materials, the problem conditioning can be significantly improved if the computational domain is split efficiently, as each subdomain can cover only a certain material set within some defined parameter range. For linear problems, e.g. heat conduction, it is very easy to split the domainin this way. A problem arises for the nonlinear Richards equation, where the values of the constitutive functions, even over a homogeneous material, can vary within several orders of magnitude, see e.g. Kuraz et al. (Appl Math Comput 201

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TA02021249" target="_blank" >TA02021249: Sustainable Utilization of the Ground Water in Czech Republic</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computing

  • ISSN

    0010-485X

  • e-ISSN

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    1 Suppleme

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    501-519

  • UT code for WoS article

  • EID of the result in the Scopus database