On some relations between curvature and metric tensors in Riemannian spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A_____%2F00%3A00001004" target="_blank" >RIV/60460709:_____/00:00001004 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On some relations between curvature and metric tensors in Riemannian spaces
Original language description
A theorem of G.G. Gadzhisalioglu and A.H.Amirov shows how to calculate a metric tensor in a semigeodesic coordinate system from its initial values on a hypersurface and some components of a curvature tensor in a domain. In the present paper the above mentioned theorem is generalized, with a simplified proof based upon Picard´s existence theorem for ordinary differential equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0265" target="_blank" >GA201/99/0265: Computer - aided differential geometry and its applications to robotics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Supplemento ai Rendiconti del Circolo Matematico di Palermo
ISSN
0009-725X
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
63
Country of publishing house
XX - stateless person
Number of pages
4
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—