On some relations betwen curvature and metric tensor in Ricmannian spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15410%2F99%3A00000370" target="_blank" >RIV/61989592:15410/99:00000370 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On some relations betwen curvature and metric tensor in Ricmannian spaces
Original language description
A theorem of G.G. Gadzhisalioglu and A.H. Amirov shows how to calculate a metric tensor in a semideogesic coordinate system from its initial values on a hypersurface and some components of a curvature tensor in a domain. In the paper a simplified proof based upon Picard´s existence theorem for ordinary differential equations is given.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F96%2F0227" target="_blank" >GA201/96/0227: Geometry of Riemannian and pseudo-Riemannian spaces and its applications to mechanics and robotics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
The 3-rd Internacional Conference on Geometry
ISBN
nemá
Number of pages of the result
105
Pages from-to
—
Number of pages of the book
—
Publisher name
Polytechnický institut Cherkassy
Place of publication
Cherkassy, Ukraine
UT code for WoS chapter
—