All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of complex mixtures for ANN modeling of pyrolysis with incomplete data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F06%3A00017616" target="_blank" >RIV/60461373:22310/06:00017616 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22340/06:00016811

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of complex mixtures for ANN modeling of pyrolysis with incomplete data

  • Original language description

    Atmospheric Gas Oils (AGO) include oil fractions boiling within 180 - 350 &#186;C and belong to basic feedstocks for the industrial pyrolysis of hydrocarbon mixtures. Since the identification of individual hydrocarbon compounds is practically impossiblefor such complex mixtures, it is better to focus on the analysis of structural groups (e.g. alkanes, monocycloalkanes, monoaromates and polyaromates) utilizing modern analytical methods as GC-MS, HPLC or NMR. Relatively reliable method for the appraisalof AGO quality is the pyrolysis gas chromatography, which can be treated not only as the physical model of the industrial reactor but also as the analytic method sensitive to the composition of oil fractions. Indirect way how to evaluate the compositionof AGO is the modelling of the feedstock by a substitute mixture of hydrocarbons exhibiting similar properties as the original mixture.

  • Czech name

    Charakterizace komplexních směsí pro modelování neuronovými sítěmi na základě nekompletních dat

  • Czech description

    Práce je zaměřena na náhradní charakterizaci komplexních směsí uhlovodíků, jako jsou například atmosferické plynové oleje, náhradní množinou skutečných chemických látek. Chrakterizace se provádí pouze na základě destilační křivky a hustoty směsi. Náhradní charakterizace byla použita pro predikci výtěžků takové směsi modelem umělé neuronové sítě.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    CI - Industrial chemistry and chemical engineering

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Full text 17th International Congress of Chemical and Process Engineering

  • ISBN

    80-86059-45-6

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    ČSCHI

  • Place of publication

    Praha

  • Event location

    Praha

  • Event date

    Aug 27, 2006

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article