All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Preparation, Properties and Utilization of Nanostructured ZnO

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43901722" target="_blank" >RIV/60461373:22310/16:43901722 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.chemicke-listy.cz/docs/full/2016_06_406-417.pdf" target="_blank" >http://www.chemicke-listy.cz/docs/full/2016_06_406-417.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    PŘÍPRAVA, VLASTNOSTI A VYUŽITÍ NANOSTRUKTUROVANÉHO ZnO

  • Original language description

    Zinc oxide, ZnO, belongs to multifunctional oxide materials. The current worldwide production exceeds one million tons per year and its application spectrum is unusually broad: additive to rubber, cement and concrete, white pigment for paintings and coatings, material for electronics and sensorics, catalyst for organic syntheses, additive to cosmetic preparations, pharmaceutical component, component of food supplements for human and animals and a wide variety of other applications. The interest in zinc oxide was stimulated by recent achievements in mastering a controlled synthesis of nanostructured ZnO, such as nanoparticles of different shapes, nanowires, nanolayers, compact polycrystalline materials with a defined grain size 1-100 nm, as well as nanocomposites, which substantially broaden the range of prospective applications. Reducing the size of particles and structures below 100 nm is related to significant changes of a variety of physical and chemical properties. This article brings a comprehensive view of issues related to nanostructured ZnO. Using a simple thermodynamic model, published data describing the effect of the ZnO nanoparticle and nanostructure size and shape on their structural and chemical stability, solubility in water and aqueous media as well as on miscibility with other metal oxides are interpreted in terms of a top-down approach

  • Czech name

    PŘÍPRAVA, VLASTNOSTI A VYUŽITÍ NANOSTRUKTUROVANÉHO ZnO

  • Czech description

    Zinc oxide, ZnO, belongs to multifunctional oxide materials. The current worldwide production exceeds one million tons per year and its application spectrum is unusually broad: additive to rubber, cement and concrete, white pigment for paintings and coatings, material for electronics and sensorics, catalyst for organic syntheses, additive to cosmetic preparations, pharmaceutical component, component of food supplements for human and animals and a wide variety of other applications. The interest in zinc oxide was stimulated by recent achievements in mastering a controlled synthesis of nanostructured ZnO, such as nanoparticles of different shapes, nanowires, nanolayers, compact polycrystalline materials with a defined grain size 1-100 nm, as well as nanocomposites, which substantially broaden the range of prospective applications. Reducing the size of particles and structures below 100 nm is related to significant changes of a variety of physical and chemical properties. This article brings a comprehensive view of issues related to nanostructured ZnO. Using a simple thermodynamic model, published data describing the effect of the ZnO nanoparticle and nanostructure size and shape on their structural and chemical stability, solubility in water and aqueous media as well as on miscibility with other metal oxides are interpreted in terms of a top-down approach

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CA - Inorganic chemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemické listy

  • ISSN

    0009-2770

  • e-ISSN

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    06-2016

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    12

  • Pages from-to

    406-417

  • UT code for WoS article

    000386559600002

  • EID of the result in the Scopus database