All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Alloying by Magnesium: A Route How to Eliminate the Amount of Ti2Ni Phase in Ni-Ti Alloy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F17%3A43915411" target="_blank" >RIV/60461373:22310/17:43915411 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Alloying by Magnesium: A Route How to Eliminate the Amount of Ti2Ni Phase in Ni-Ti Alloy

  • Original language description

    This article offers completely new results in the research of NiTi alloys produced by Self-propagating High-temperature Synthesis (SHS). There is investigated the effect of addition of magnesium on the microstructure, phase composition and especially, the amount of undesirable Ti2Ni phase. This phase is unwanted in NiTi alloy because of its brittleness. Moreover, this one is stabilized by oxygen and forms during SHS process. Selected preparation method is considered as an alternative to the melting metallurgy, which produced products with poor homogeneity and purity. For this reason, SHS process has been studied intensely and many researchers have tried to eliminate secondary phases unsuccessfully. Our research showed that alloying by element with high affinity to oxygen causes disappearance of Ti2Ni phase.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GBP108%2F12%2FG043" target="_blank" >GBP108/12/G043: Interface controlled properties of micro/nanocrystalline materials for advanced structural applications, biodegradable implants and hydrogen storage</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manufacturing Technology

  • ISSN

    1213-2489

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    4

  • Pages from-to

    576-579

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85029566924