All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43916700" target="_blank" >RIV/60461373:22310/18:43916700 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0955221918300682" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955221918300682</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2018.01.040" target="_blank" >10.1016/j.jeurceramsoc.2018.01.040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results

  • Original language description

    The effective Young&apos;s modulus and thermal conductivity of porous materials can be rigorously bounded from above via micromechanical bounds (upper Wiener Paul bounds and upper Hashin Shtrikman bounds), and several model relations are commonly used as tentative approximate predictions (Maxwell-type, Coble-Kingery-type, power-law and exponential relations). Based on numerical calculations on computer-generated digital model microstructures, both periodic and random, it is shown that these model relations provide rough approximations that are more or less appropriate for microstructures with essentially convex pores, but are not suitable for microstructures with concave pores. On the other hand, the Pabst Gregorova cross-property relation provides a very accurate (better than 0.04 relative property units) analytical prediction for the relative Young&apos;s modulus of isotropic porous materials with isometric pores, both convex and concave, when the relative thermal conductivity is known. It is shown that this cross-property relation is the best prediction currently available for isotropic porous materials with isometric pores.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20504 - Ceramics

Result continuities

  • Project

    <a href="/en/project/GA15-18513S" target="_blank" >GA15-18513S: Processing and characterization of oxide and silicate ceramics with controlled microstructure and modeling of microstructure-property relations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the European Ceramic Society

  • ISSN

    0955-2219

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    2694-2707

  • UT code for WoS article

    000430647800003

  • EID of the result in the Scopus database

    2-s2.0-85041607958