New highly sensitive microfluidic sensor architecture for on-line SERS measurements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918598" target="_blank" >RIV/60461373:22310/19:43918598 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
New highly sensitive microfluidic sensor architecture for on-line SERS measurements
Original language description
In this work, we demonstrate the microfluidic platform with a plasmon active area. The proposed microfluidic platform utilizes the unique advantages of microfluidics, such as unusual behaviour of microscale-restricted liquids and surface-enhanced Raman spectroscopy, which is able to recognize the single molecule of the targeted analyte. The design and realization of the proposed experimental model include the solving of following tasks: (i) preparation of microfluidic platform using 3D printing; (ii) application of excimer UV laser large-scale surface patterning and local gold deposition for the creation of plasmonic active area (creation of gold grating), (iii) creation of hierarchical plasmonic structure trough further grafting multibranched Au nanoparticles with sharp edges on gold grating surface. The surface properties and structure of plasmon-active area were studied various physical and chemical methods: XPS, AFM, UV-Vis in each of the above steps. The functionality of prepared microfluidic SERS chips was studied to the model analyte R6G. The resulting microfluidic model was compared with the microfluidic model without plasmon-active area or containing single gold grating. In addition, a mathematical simulation of possible processes in microfluidic element was performed using the Comsol software. Experimental results indicate that our SERS microfluidic platform allows detection of model analyte (R6G) at concentrations down to 10 fM (10−15 mol⋅L−1Proposed unique features are the key to new scientific experiments and innovations in the field of lab-on-a-chip devices and analytical approaches.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/TK01030128" target="_blank" >TK01030128: H2PLAZMON - Advanced plasmonic technology for production, storage, and utilization of green hydrogen</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů