Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920375" target="_blank" >RIV/60461373:22310/20:43920375 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/ko/content/articlehtml/2020/nr/c9nr10257d" target="_blank" >https://pubs.rsc.org/ko/content/articlehtml/2020/nr/c9nr10257d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9nr10257d" target="_blank" >10.1039/c9nr10257d</a>
Alternative languages
Result language
angličtina
Original language name
Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation
Original language description
Black phosphorus (BP) in its monolayer form called phosphorene is thought of as a successor of graphene and is of great interest for (opto)electronic applications. A quantitative and scalable method for the synthesis of (mono-)few-layer phosphorene has been an outstanding challenge due to the process irreproducibility and environmental degradation capability of the BP. Here, we report a facile controlled electrochemical exfoliation method for the preparation of a few-layer phosphorene (FP) with nearly 100% yield. Our approach relies on the low-potential influence in anhydrous and oxygen-free low-boiling acetonitrile (AN) and N,N-dimethylformamide (DMF) using alkylammonium ions. Herein, intercalation of positive ions into BP interlayers occurred with a minimum potential of -2.95 V in DMF and -2.85 V in AN and the non-damaging and highly accurate electrochemical exfoliation lasted at -3.8 V. A variety of analytical methods have revealed that in particular DMF-based exfoliation results in high-quality phosphorene of 1-5 layers with good crystallinity and lateral sizes up to tens of micrometers. Moreover, assurance of the oxygen- and water-free environment allowed us to minimize the surface oxidation of BP and, consequently, exfoliated phosphorene. We pioneer an effective and reproducible printing transfer of electrochemically exfoliated phosphorene films onto various flexible and rigid substrates. The surfactant-free process of exfoliation allowed assembly and transfer of thin films based on FP. The phosphorene-based films characterized as direct gap semiconductors have a layer-number-dependent bandgap with a tuning range larger than that of other 2D materials. We show that on varying the films' thickness, it is possible to modify their optical properties, which is a significant advantage for compact and switchable optoelectronic components. © 2020 The Royal Society of Chemistry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GX19-26910X" target="_blank" >GX19-26910X: The chemistry in two dimensions - beyond graphene</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanoscale
ISSN
2040-3364
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
2638-2647
UT code for WoS article
000517839900042
EID of the result in the Scopus database
2-s2.0-85078693279