All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920375" target="_blank" >RIV/60461373:22310/20:43920375 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/ko/content/articlehtml/2020/nr/c9nr10257d" target="_blank" >https://pubs.rsc.org/ko/content/articlehtml/2020/nr/c9nr10257d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9nr10257d" target="_blank" >10.1039/c9nr10257d</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation

  • Original language description

    Black phosphorus (BP) in its monolayer form called phosphorene is thought of as a successor of graphene and is of great interest for (opto)electronic applications. A quantitative and scalable method for the synthesis of (mono-)few-layer phosphorene has been an outstanding challenge due to the process irreproducibility and environmental degradation capability of the BP. Here, we report a facile controlled electrochemical exfoliation method for the preparation of a few-layer phosphorene (FP) with nearly 100% yield. Our approach relies on the low-potential influence in anhydrous and oxygen-free low-boiling acetonitrile (AN) and N,N-dimethylformamide (DMF) using alkylammonium ions. Herein, intercalation of positive ions into BP interlayers occurred with a minimum potential of -2.95 V in DMF and -2.85 V in AN and the non-damaging and highly accurate electrochemical exfoliation lasted at -3.8 V. A variety of analytical methods have revealed that in particular DMF-based exfoliation results in high-quality phosphorene of 1-5 layers with good crystallinity and lateral sizes up to tens of micrometers. Moreover, assurance of the oxygen- and water-free environment allowed us to minimize the surface oxidation of BP and, consequently, exfoliated phosphorene. We pioneer an effective and reproducible printing transfer of electrochemically exfoliated phosphorene films onto various flexible and rigid substrates. The surfactant-free process of exfoliation allowed assembly and transfer of thin films based on FP. The phosphorene-based films characterized as direct gap semiconductors have a layer-number-dependent bandgap with a tuning range larger than that of other 2D materials. We show that on varying the films&apos; thickness, it is possible to modify their optical properties, which is a significant advantage for compact and switchable optoelectronic components. © 2020 The Royal Society of Chemistry.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/GX19-26910X" target="_blank" >GX19-26910X: The chemistry in two dimensions - beyond graphene</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    2638-2647

  • UT code for WoS article

    000517839900042

  • EID of the result in the Scopus database

    2-s2.0-85078693279