All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solvent influence on selectivity in α-pinene oxide isomerization using MoO3-modified zeolite beta

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920391" target="_blank" >RIV/60461373:22310/20:43920391 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4344/10/11/1244" target="_blank" >https://www.mdpi.com/2073-4344/10/11/1244</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/catal10111244" target="_blank" >10.3390/catal10111244</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solvent influence on selectivity in α-pinene oxide isomerization using MoO3-modified zeolite beta

  • Original language description

    Natural source turpentine is an available source of α-pinene oxide. This compound’s value is especially given by the possibility of producing important compounds campholenic aldehyde and trans-carveol. In this work, we would like to present the usage of MoO3-modified zeolite BETA in α-pinene oxide isomerization concerning campholenic aldehyde and trans-carveol formation using a wide range of solvents. Catalyst calcination temperature also influenced the reaction course (selectivity to desired compounds and reaction rate). MoO3-zeolite BETA was prepared by the wet impregnation method and characterized by different techniques. The use of polar aprotic solvents had the most positive effect on the reaction course. Solvent basicity and polarity considerably influenced the reaction rate and selectivity to particular products. The combination of high basicity and the high polarity was the most suitable for the studied reaction from the reaction rate point of view. Selectivity to campholenic aldehyde and trans-carveol was the most influenced by solvent basicity. Higher solvent basicity caused the preferential formation of trans–carveol, influence on selectivity to campholenic aldehyde formation was the opposite. The described catalyst may be used for α-pinene oxide rearrangement to both desired products dependently on the used solvent. Molybdenum offers an exciting alternative for previously described modifications of zeolites for this reaction. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

    <a href="/en/project/LO1613" target="_blank" >LO1613: Future materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catalysts

  • ISSN

    2073-4344

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000593660000001

  • EID of the result in the Scopus database

    2-s2.0-85094589367