Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924146" target="_blank" >RIV/60461373:22310/22:43924146 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlehtml/2022/se/d2se01109c" target="_blank" >https://pubs.rsc.org/en/content/articlehtml/2022/se/d2se01109c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2se01109c" target="_blank" >10.1039/d2se01109c</a>
Alternative languages
Result language
angličtina
Original language name
Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells
Original language description
Hybrid organic-inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL(-1) and 0.1 mg mL(-1), a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage (V-oc) is reported beyond an additive concentration threshold of 0.03 mg mL(-1). The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs via energy level optimization at perovskite/charge transporting layer interfaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sustainable Energy and Fuels
ISSN
2398-4902
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
23
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
5345-5359
UT code for WoS article
000877637100001
EID of the result in the Scopus database
2-s2.0-85141767724