Engineering of the perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929946" target="_blank" >RIV/60461373:22310/24:43929946 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlehtml/2024/se/d4se00212a" target="_blank" >https://pubs.rsc.org/en/content/articlehtml/2024/se/d4se00212a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4se00212a" target="_blank" >10.1039/d4se00212a</a>
Alternative languages
Result language
angličtina
Original language name
Engineering of the perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cells
Original language description
Layered two-dimensional (2D) transition-metal chalcogenides (TMCs) attract substantial interest across multiple disciplines due to their unique properties. In perovskite solar cells (PSCs), researchers have extensively explored the integration of 2D TMCs to enhance device power conversion efficiency (PCE) and stability. However, there is a research gap in understanding their impact on inverted (p-i-n) PSCs, especially at the perovskite/electron-transporting layer (ETL) interface. This study addresses this gap by investigating the effect of inserting InSe, MoSe2, and SnS2 nanosheets at the perovskite/ETL interface in inverted PSCs. The introduction of 2D TMC interlayers induces a downward shift in perovskite energy levels, optimizing the energy level alignment at the perovskite/ETL interface and substantially increasing the PCE. The SnS2-incorporating PSCs exhibit the highest relative improvement of 5.05% (InSe and MoSe2 nanosheets yield 3.37% and 2.5% PCE increase, respectively). This enhancement results in an absolute PCE of 18.5% with a fill factor exceeding 82%. Furthermore, the incorporation of InSe nanosheets eliminates the burn-in phase enhancing the long-term stability (T70 of 250 h) of unencapsulated devices. This study underscores the significant improvement in PSCs' PCE and stability by selectively incorporating suitable TMCs at the perovskite/ETL interface. This research offers insights into the potential role of TMCs in advancing PSCs. Representative 2D transition metal chalcogenides (InSe, SnS2, MoSe2) were placed at the perovskite/ETL interface in inverted perovskite solar cells to improve performance and stability.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sustainable Energy & Fuels
ISSN
2398-4902
e-ISSN
2398-4902
Volume of the periodical
8
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
2180-2190
UT code for WoS article
001202488200001
EID of the result in the Scopus database
2-s2.0-85190534075