All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electroactive nanocarbon materials as signaling tags for electrochemical PCR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924185" target="_blank" >RIV/60461373:22310/22:43924185 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0039914022002752" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0039914022002752</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.talanta.2022.123479" target="_blank" >10.1016/j.talanta.2022.123479</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electroactive nanocarbon materials as signaling tags for electrochemical PCR

  • Original language description

    Electrochemical polymerase chain reaction (PCR) represents a valid alternative to the optical-based PCR due to reduced costs of signaling labels, use of simpler instrumentation, and possibility of miniaturization and portability of the systems, which can facilitate decentralized detection. The high intrinsic electroactivity and strong linear relationship between the material concentration and its redox signal suggest a possible use of oxidized nanocarbon materials as electroactive tags for PCR. Herein, we compared three different nanographene oxide materials namely nGO-1, nGO-2 and nGO-3 as signaling tags for the detection of genetically modified organisms (GMO) by electrochemical PCR. The three materials differ in size, chemical composition as well as type and amount of oxygen functionalities verified by extensive characterization with X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM) and electrochemical methods. A sense primer sequence belonging to the Cauliflower Mosaic Virus 35S promoter (a common genetic marker for GMO screening) was used to conjugate to the nanocarbon materials by carbodiimide chemistry before PCR amplification with a biotinylated antisense strand. Finally, the amplified electroactive PCR product was detected, where the reduction signal derived from the electrochemically reducible oxygenated functionalities on the nanocarbon material surface was directly correlated to the presence of GMO. Overall, we were able to correlate the different material characteristics with their performance as electroactive labels and identify the nanocarbon material that exhibits the highest potential to be used as innovative electroactive label for PCR in the amplification and detection of the selected target sequence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Talanta

  • ISSN

    0039-9140

  • e-ISSN

    1873-3573

  • Volume of the periodical

    245

  • Issue of the periodical within the volume

    1 August 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000794844400005

  • EID of the result in the Scopus database

    2-s2.0-85128224311