All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Indium Selenide/Indium Tin Oxide Hybrid Films for Solution-Processed Photoelectrochemical-Type Photodetectors in Aqueous Media

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43924199" target="_blank" >RIV/60461373:22310/23:43924199 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201635" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201635</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/admi.202201635" target="_blank" >10.1002/admi.202201635</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Indium Selenide/Indium Tin Oxide Hybrid Films for Solution-Processed Photoelectrochemical-Type Photodetectors in Aqueous Media

  • Original language description

    2D metal monochalcogenides have recently attracted interest for photoelectrochemical (PEC) applications in aqueous electrolytes. Their optical bandgap in the visible and near-infrared spectral region is adequate for energy conversion and photodetection/sensing. Their large surface-to-volume ratio guarantees that the charge carriers are photogenerated at the material/electrolyte interface, where redox reactions occur, minimizing recombination processes. However, solution-processed photoelectrodes based on these materials exhibit energy conversion efficiencies that are far from the current state of the art expressed by established technologies. This work reports a systematic morphological, spectroscopic, and PEC characterization of solution-processed films of photoactive InSe flakes for PEC-type photodetectors. By optimizing the thickness and hybridizing InSe flakes with electrically conductive Sn:In2O3 (ITO) nanocrystals, photoanodes with a significant photoanodic response in both acidic and alkaline media are designed, reaching responsivity up to 60.0 mA W-1 (external quantum efficiency = 16.4%) at +0.4 V versus RHE under visible illumination. In addition, a strategy based on the use of sacrificial agents (i.e., 2-propanol and Na2SO3) is proposed to improve the stability of the InSe and ITO/InSe photodetectors. Our data confirm the potential of 2D InSe for PEC energy conversion and sensing applications, remarking the challenges related to InSe stability during anodic operation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Materials Interfaces

  • ISSN

    2196-7350

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000870536700001

  • EID of the result in the Scopus database

    2-s2.0-85140122398