All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Charge transfer induced Lifshitz transition and magnetic symmetry breaking in ultrathin CrSBr crystals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927571" target="_blank" >RIV/60461373:22310/23:43927571 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.195410" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.195410</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.108.195410" target="_blank" >10.1103/PhysRevB.108.195410</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Charge transfer induced Lifshitz transition and magnetic symmetry breaking in ultrathin CrSBr crystals

  • Original language description

    Ultrathin CrSBr flakes are exfoliated in situ on Au(111) and Ag(111) and their electronic structure is studied by angle-resolved photoemission spectroscopy. The thin flakes&apos; electronic properties are drastically different from those of the bulk material and also substrate dependent. For both substrates, a strong charge transfer to the flakes is observed, partly populating the conduction band and giving rise to a highly anisotropic Fermi contour with an Ohmic contact to the substrate. The fundamental CrSBr band gap is strongly renormalized compared to the bulk. The charge transfer to the CrSBr flake is substantially larger for Ag(111) than for Au(111), but a rigid energy shift of the chemical potential is insufficient to describe the observed band structure modifications. In particular, the Fermi contour shows a Lifshitz transition, the fundamental band gap undergoes a transition from direct on Au(111) to indirect on Ag(111) and a doping-induced symmetry breaking between the intralayer Cr magnetic moments further modifies the band structure. Electronic structure calculations can account for nonrigid Lifshitz-type band structure changes in thin CrSBr as a function of doping and strain. In contrast to undoped bulk band structure calculations that require self-consistent GW theory, the doped thin film properties are well approximated by density functional theory if local Coulomb interactions are taken into account on the mean-field level and the charge transfer is considered.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PHYSICAL REVIEW B

  • ISSN

    2469-9950

  • e-ISSN

    2469-9969

  • Volume of the periodical

    108

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85177092674