All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ferromagnetic Elements in Two-Dimensional Materials: 2D Magnets and Beyond

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43927513" target="_blank" >RIV/60461373:22310/24:43927513 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202309046" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202309046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202309046" target="_blank" >10.1002/adfm.202309046</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ferromagnetic Elements in Two-Dimensional Materials: 2D Magnets and Beyond

  • Original language description

    Ferromagnetism in 2D materials has attracted tremendous interest from the scientific community thanks to its potential for the design of magnetic materials with unique properties. The presence of a ferromagnetic element in a 2D material can improve the existing properties and offer new ones, giving rise to the development of manifold applications. This review focuses on recent advances and perspectives of 2D materials that bear at least one ferromagnetic element (iron, cobalt, nickel) as i) structural constituent, ii) dopant atom, or iii) adjacent atom through proximity effect. By describing in detail the magnetic properties that have emerged so far, their potential to form next-generation 2D magnets is discussed. Moreover, the contribution of such 2D materials is analyzed in various applications (electrochemical, photochemical, optical, and electronic), aiming to explore further functionalities and capabilities of ferromagnetic elements, apart from their magnetic nature. Special attention is given to gadolinium and other rare earth elements that display a ferromagnetic order even at ultra-low temperatures and form part of 2D structured materials, with particularly appealing properties deriving from their 4f electrons.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ADVANCED FUNCTIONAL MATERIALS

  • ISSN

    1616-301X

  • e-ISSN

    1616-3028

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    36

  • Pages from-to

  • UT code for WoS article

    001110694500001

  • EID of the result in the Scopus database

    2-s2.0-85178151878