Linear and Non-Linear Models for Signal Prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F09%3A00022098" target="_blank" >RIV/60461373:22340/09:00022098 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linear and Non-Linear Models for Signal Prediction
Original language description
The focus of the study is in the proposal of a suitable prediction model and comparison of results of different methods. Methods presented include polynomial models, autoregressive models, linear neural networks, adaptive linear element, feed-forward neural networks, the Elman neural networks and a recurrent neural networks with a real time recurrent learning algorithm. The created algorithms have been then applied for processing of real data representing gas consumption in the Czech Republic.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings 17th Annual Conference Technical Computing Prague 2009
ISBN
978-80-7080-733-0
ISSN
—
e-ISSN
—
Number of pages
20
Pages from-to
—
Publisher name
Humusoft
Place of publication
Praha
Event location
Praha
Event date
Nov 19, 2009
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—