Compensation of Linear Acceleration in Single-Mass MEMS Gyroscope
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU130440" target="_blank" >RIV/00216305:26210/19:PU130440 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Compensation of Linear Acceleration in Single-Mass MEMS Gyroscope
Original language description
Single mass MEMS gyroscopes suffer from significant sensitivity to linear acceleration also known as gsensitivity. In the case of multi-axis inertia measurement unit (IMU), we could benefit from direct acceleration measurement to suppress the influence of linear acceleration on gyroscope output. In this paper, we will derive a gyroscope dynamic model, pointing out the influence of linear acceleration, evaluate the performance of common fusion algorithm and suggest a method for compensation of linear acceleration sensitivity using artificial neural network (ANN). The neural network was designed as a nonlinear autoregressive neural network with external input (NARX). The proposed method is experimentally tested on the real system with emphasis on tilt estimation. A comparison of tilt measurement against tilt estimator based on ANN and conventional fusion algorithm is made. Results suggest that the accuracy was improved with the proposed ANN.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS OF THE 2018 18TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA (ME)
ISBN
978-80-214-5542-9
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
338-343
Publisher name
Neuveden
Place of publication
Neuveden
Event location
Brno
Event date
Dec 5, 2018
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000465104200053