Virial coefficients and equation of state of the penetrable sphere model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F10%3A00023341" target="_blank" >RIV/60461373:22340/10:00023341 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Virial coefficients and equation of state of the penetrable sphere model
Original language description
We study the penetrable sphere (alias square mound) model in the fluid phase by means of the virial expansion, molecular dynamics simulations, and OrnsteinZernike integral equation. The virial coefficients up to B8 are expressed as polynomials in the Boltzmann factor with the coefficients calculated by a Monte Carlo integration. New data for pressure and internal energy are obtained by molecular dynamics simulations with attention paid to finite-size errors and properties of the Andersen thermostat. The data and virial coefficients are correlated by a formula for the Helmholtz free energy. We also propose a new closure for the OrnsteinZernike equation and test several other closures.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC512" target="_blank" >LC512: Center for biomolecules and complex molecular systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
—
UT code for WoS article
000272589000029
EID of the result in the Scopus database
—