: Zero Points of General Quaternionic Polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F13%3A43896431" target="_blank" >RIV/60461373:22340/13:43896431 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
: Zero Points of General Quaternionic Polynomials
Original language description
. We consider quaternionic polynomials in the most general form. More precisely, polynomials are arbitrary, finite, sums of monomials, where monomials of degree j have the form a0 ? x ? a1 ? x ? a2 ? x ? ? ? x ? aj?1 ? x ? aj, with a variable j. This allows also several monomials of the same degree. Our aim is to apply Newton?s method to compute zero points of these polynomials, namely to calculate the Jacobi matrix needed in Newton?s method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
11th Imternational Conference of Numerical Analysis and Applied Mathematics 2013
ISBN
978-0-7354-1184-5
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
554-557
Publisher name
AIP Publishing LLC
Place of publication
Melville, New York
Event location
Rhodes, Greece
Event date
Sep 21, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—