Solving composite sum of powers via Padé approximation and orthogonal polynomials with application to optimal PWM problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217660" target="_blank" >RIV/68407700:21230/14:00217660 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2014.03.081" target="_blank" >http://dx.doi.org/10.1016/j.amc.2014.03.081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2014.03.081" target="_blank" >10.1016/j.amc.2014.03.081</a>
Alternative languages
Result language
angličtina
Original language name
Solving composite sum of powers via Padé approximation and orthogonal polynomials with application to optimal PWM problem
Original language description
This paper presents methods for solving the polynomial system sum_{j=1}^k x_j^i - sum_{j=k+1}^n x_j^i = p_i, i = 1,2,...,n, which is called the composite sum of powers. It is shown that these polynomial equation can be reduced to a single-variable polynomial equations by exploiting the modified Newton s identities. In this paper we generalize this identity and solve it via Padé approximation theory and the related theory of formal orthogonal polynomials (FOPs). Because the solution forms the roots of FOPs we present several interesting computational procedures, such as the use of three-term reccurence formulas, determinantal formulations and the computation of the eigenvalues of tridiagonal matrices. The computation of this special polynomial system arise in practical engineering task of solving optimal odd symmetry single-phase pulse-width modulated (PWM) problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP103%2F10%2FP323" target="_blank" >GPP103/10/P323: Effective Methods for Optimal PWM Problem</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
236
Issue of the periodical within the volume
June
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
593-605
UT code for WoS article
000335899200054
EID of the result in the Scopus database
—