All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON SOME NEW IDENTITIES FOR THE FIBONOMIAL COEFFICIENTS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F14%3A50002482" target="_blank" >RIV/62690094:18470/14:50002482 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.2478/s12175-014-0241-7" target="_blank" >http://dx.doi.org/10.2478/s12175-014-0241-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/s12175-014-0241-7" target="_blank" >10.2478/s12175-014-0241-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON SOME NEW IDENTITIES FOR THE FIBONOMIAL COEFFICIENTS

  • Original language description

    Let Fn be the nth Fibonacci number. The Fibonomial coefficients ${nbrack k}_F$ are defined for $ngeq k&gt;0$ as follows [{nbrack k}_F=frac{F_n F_{n-1}cdots F_{n-k+1}}{F_1 F_2cdots F_{k}}~, ] with ${nbrack 0}_F=1$ and ${nbrack k}_F=0$ for $n{k$.In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that [ sum_{j=0}^{4l+1} mbox{textrm{sgn}} (2l-j) , {4l+1brack j}_F , F_{n-j} = - frac{F_{2l-1}}{F_{4l+1}} {4l+1brack 2l}_F , F_{n-4l-1},] holds for all non-negative integers $n$ and $l$. %The Fibonomial coefficients belong among generalized %binomial coefficients which was published firstly in 1915 by Fonten&apos;e (see %cite{Fo}) and independently in 1936 by Ward (see cite{Wa}).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Slovaca

  • ISSN

    0139-9918

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    10

  • Pages from-to

    809-818

  • UT code for WoS article

    000341832200002

  • EID of the result in the Scopus database