ON PARITY OF FIBONOMIAL NUMBERS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50003546" target="_blank" >RIV/62690094:18470/15:50003546 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ON PARITY OF FIBONOMIAL NUMBERS
Original language description
Let $F_n$ be the $n$th Fibonacci number. For $0<k< m$ let {mbrack k}_F= frac{F_m F_{m-1}cdots F_{m-k+1}}{F_1cdots F_k} be the corresponding Fibonomial coefficient. In this paper, we shall present some results on the parity of ${sn brack n}_F$, for positive integers $n$ and $s$. In particular, among other things, we shall prove that the central Fibonomial coefficient ${2nbrack n}_F$ is even, for all $n>1$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Utilitas Mathematica
ISSN
0315-3681
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
červenec
Country of publishing house
CA - CANADA
Number of pages
7
Pages from-to
129-135
UT code for WoS article
000355784000010
EID of the result in the Scopus database
—