All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Some New Sums of Fibonomial Coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F12%3A50000628" target="_blank" >RIV/62690094:18470/12:50000628 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Some New Sums of Fibonomial Coefficients

  • Original language description

    Let (Fn) be the Fibonacci sequence given by the recurrence relation F_{n+2}=F_{n+1}+F_n, with F_0=0 and F_1=1. The Fibonomial coefficients [m,k]_F, which are a generalization of binomial coefficients, arise by replacing the natural numbers by the terms of sequence (F_n). During the last decades several identities among these numbers have been found. For example Gould in 1969 derived the relation sum_j=k^n (F_j- F_{j-k})/F_k [j-1,k-1]_F = [n,k]_F and other interesting identities found Lind in 1971 and recently Kilic et al. derive a very general formula. In this paper, we shall provide some interesting sums. In particular, we prove that sum_j=0^n (-1)^{j/2(j+1)} [4m+2,j]_F F_{n+4m+2-j} = 0 holds for all non-negative integers m and n.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fibonacci quarterly

  • ISSN

    0015-0517

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CA - CANADA

  • Number of pages

    8

  • Pages from-to

    155-162

  • UT code for WoS article

  • EID of the result in the Scopus database