On Some New Sums of Fibonomial Coefficients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F12%3A50000628" target="_blank" >RIV/62690094:18470/12:50000628 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Some New Sums of Fibonomial Coefficients
Original language description
Let (Fn) be the Fibonacci sequence given by the recurrence relation F_{n+2}=F_{n+1}+F_n, with F_0=0 and F_1=1. The Fibonomial coefficients [m,k]_F, which are a generalization of binomial coefficients, arise by replacing the natural numbers by the terms of sequence (F_n). During the last decades several identities among these numbers have been found. For example Gould in 1969 derived the relation sum_j=k^n (F_j- F_{j-k})/F_k [j-1,k-1]_F = [n,k]_F and other interesting identities found Lind in 1971 and recently Kilic et al. derive a very general formula. In this paper, we shall provide some interesting sums. In particular, we prove that sum_j=0^n (-1)^{j/2(j+1)} [4m+2,j]_F F_{n+4m+2-j} = 0 holds for all non-negative integers m and n.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
2
Country of publishing house
CA - CANADA
Number of pages
8
Pages from-to
155-162
UT code for WoS article
—
EID of the result in the Scopus database
—