Matrices Over Nondivision Algebras Without Eigenvalues
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F15%3A43900572" target="_blank" >RIV/60461373:22340/15:43900572 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/16:43902667
Result on the web
<a href="http://link.springer.com/article/10.1007/s00006-015-0615-0" target="_blank" >http://link.springer.com/article/10.1007/s00006-015-0615-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-015-0615-0" target="_blank" >10.1007/s00006-015-0615-0</a>
Alternative languages
Result language
angličtina
Original language name
Matrices Over Nondivision Algebras Without Eigenvalues
Original language description
We are concerned with matrices over nondivision algebras and show by an example from an R^4 algebra that these matrices do not necessarily have eigenvalues, even if they are invertible. The standard condition for eigenvectors to be nonzero will be replaced by the condition that x contains at least one invertible component. The topic is of principal interest, and leads to the question what qualifies a matrix over a nondivision algebra to have eigenvalues. And connected with this problem there is the question, whether these matrices are diagonalizable or triangulizable and allow a Schur decomposition.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
Springerlink.com 2015
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
1-22
UT code for WoS article
—
EID of the result in the Scopus database
—